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Abstract

Two common issues arise in regression modelling of bivariate count data: i) depen-
dence across outcomes, and ii) excess zero counts (i.e., zero inflation). However,
there are currently few options for estimating bivariate zero-inflated count regres-
sion models in R. Therefore, we present an R package, bizicount, to enable re-
searchers to easily estimate bivariate zero-inflated count copula regression models.
By using copulas to model the dependence across outcomes, researchers do not have
to make assumptions about the multivariate (and zero-inflated) structure relating
their count variables to one another. Instead, they are only required to make famil-
iar assumptions about the marginal distribution of each outcome variable, which
should enable wider use of our approach. Below we present our proposed estima-
tor, detail its advantages over existing alternatives, and demonstrate the use of the
corresponding functions for bivariate modeling of terrorism data from Nigeria.
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1 Motivation

Count data often contain a higher proportion of zeroes than expected under commonly
used distributions such as the Poisson or Negative binomial. These “excess” zeroes have
led to the development of statistical models that account for zero inflation in count data
(e.g., Mullahy, 1986; Lambert, 1992), which are now widely used by applied researchers.
While these zero-inflated count data models are available in most commonly-used sta-
tistical software packages, these are all for single count (i.e., univariate) processes.1 For
bivariate (or multivariate) count processes, there are few options for modelling excess
zeroes. As such, researchers are often forced to either: a) ignore the “excess” zeroes in
the data, or b) ignore the dependence across counts.

The statistical consequences of erroneously neglecting zero inflation or assuming in-
dependence are widely known. When (univariate) count data are zero inflated – ex. if a
separate process produces excess “structural” zeroes – one-part count models (i.e., Pois-
son regression models) that neglect zero inflation are known to be biased and result in
inefficient estimators. Similarly, when bivariate count data is assumed to be independent,
then any unmodeled dependence produces statistically inefficient estimators of the model
paramaters, which can also result in inferential errors.

When researchers with bivariate zero-inflated count data neglect both issues, they in-
herit both of these problems: unmodeled excess zeroes and unmodeled count dependence.
Moreover, addressing only one issue – i.e., modeling zero inflation or dependence, but not
both – does not ensure better-behaved estimators. For example, using widely-available
bivariate count estimators – e.g., Stata’s bivcnto, or R’s GJRM – in the presences of
unmodeled excess zeroes risks biased estimates of both the covariate coefficients and the
dependence parameter. The bias in the dependence paramater also produces inaccurate
(and over confident) estimates of the standard errors for the covariate coefficients in the
marginal count models. That is, by addressing only the cross-outcome dependence, we
produce an estimator of the covariate coefficients that is biased and overconfident, thereby
increasing the risk of inferential errors.

Despite recent developments in zero-inflated, bivariate count regression models (Arab
et al., 2012; Faroughi and Ismail, 2017a,b; Gurmu and Elder, 2008; Li et al., 1999; Wang,
2003; Wang et al., 2003), most of these estimators are not yet widely available to applied
researchers in commonly used statistical software. The only software implementations
we can locate that permit bivariate zero-inflated count regression are the SAS®-macro,
%bicount (Chou and Steenhard, 2011), which supports only a Frank copula, and the R
package bivpois (Karlis and Ntzoufras, 2005), which is archived on CRAN, does not per-
mit negative dependence for zero-inflation, and also assumes a specific joint distribution.
1For R, see the pscl package (Jackman et al., 2020); for Stata, see the zip command (StataCorp, 2019);
for SAS, see SAS Institute (2020); for Python, see Seabold and Perktold (2010). SPSS relies on a R
plug-in that calls up the pscl package.
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Therefore, in this article we present the bizicount R package for estimating bivariate
zero-inflated count copula regression models. Our work builds on recent developments
in copula regression models for discrete outcomes (e.g., So, Lee and Jung, 2011; Yang,
Frees and Zhang, 2020), which do not require assumptions about the form of the joint
distribution. Instead, one only needs to make familiar assumptions on the marginal
distributions of each outcome. Our copula-based strategy is also advantageous in that
allows researchers to specify different marginal distributions of each outcome, naturally
accommodating mixed-process models. After reviewing several approaches to modeling
bivariate, zero-inflated count distributions, we discuss existing software, detail our imple-
mentation, and provide an empirical demonstration analyzing terror attacks in Nigeria.

2 Modeling Dependence in Bivariate Counts

Researchers tend to model bivariate counts by either: i) specifying the full joint
distribution, or ii) using copulas to model the dependence between the counts. In the
following, we briefly survey existing research on both approaches, then discuss how these
can be generalized to allow for zero-inflation.

2.1 Bivariate Count Mass Functions

In the first of these approaches, one often specifies the joint distribution for bivariate
count data in one of two ways: i) the trivariate reduction method, or ii) the multiplicative
factors method.

The trivariate reduction method (Kocherlakota and Kocherlakota, 1992; Lai, 1995, 8)
can be used to arrive at a bivariate Poisson distribution, as detailed by Holgate (1964)
and Marshall and Olkin (1985, 334). First let

Y1 = X + U,

Y2 = V + U,

with X, V , and U independent Poisson random variables with rate λX , λV , and λU ,
respectively. Then, it follows that the joint distribution of Y1 and Y2 is bivariate Poisson
with

fY1,Y2(y1, y2) = P (Y1 = y1, Y2 = y2) = e(−λX−λV −λU )
min(y1,y2)∑

c=0

λcUλ
y1−c
X λy2−c

V

(y1 − c)!(y2 − c)!c!
, (1)

for y1, y2 = 0, 1, . . . ,∞. The joint distribution has Poisson margins with parameters
λ1 = λX + λU and λ2 = λV + λU , and Cov(Y1, Y2) = λU . Thus, this formulation permits
only positive dependence in the two counts.
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As an alternative to the trivariate reduction approach, and in order to allow the
dependence between outcomes to be unrestricted, Lakshminarayana, Pandit and Srini-
vasa Rao (1999) propose a bivariate Poisson distribution using the approach discussed by
Sarmanov (1966) and Ting Lee (1996). Specifically, a bivariate Poisson mass function is
arrived at as the product of Poisson marginals with a multiplicative factor

fY1,Y2(y1, y2) =
[
e(−λ1−λ2)λy1

1 λ
y2
2

y1!y2!

] [
1 + α

(
e−y1 − eλ1c

) (
e−y2 − e−λ2c

)]
, (2)

which has Poisson margins with parameters λ1 and λ2, and Cov(Y1, Y2) = αλ1λ2c
2e−c(λ1+λ2),

where c = 1− e−1. In this case, the sign on the covariance depends on the estimated sign
of α, which can be positive, negative, or zero.

These two approaches are readily extended to permit over- and under-dispersion in the
form of bivariate negative binomial (Famoye, 2010b; Marshall and Olkin, 1990) or bivari-
ate generalized Poisson distributions (Famoye, 2010a). Each of these bivariate probability
mass functions (PMF) can also be further extended to permit zero-inflation in the counts.
Recall that the PMF for a univariate zero-inflated count distribution is

fZI(y) =


ψ + (1− ψ) · fC(y), for y = 0,

(1− ψ) · fC(y), for y > 0,
(3)

and the corresponding cumulative distribution function (CDF) is then

FZI(y) = ψ + (1− ψ)
y∑
i=0

fC(i), (4)

with y ∈ Z≥0 and ψ ∈ [0, 1], the probability of zero-inflation. Here fC(·) denotes the PMF
of some arbitrary count distribution, e.g., the Poisson, negative binomial, or generalized
Poisson. Then, combining the intuition of the univariate zero-inflated distribution from
?? with the bivariate Poisson PMF from ??, we have a PMF for the BZIP based on
multiplicative factors (Faroughi and Ismail, 2017b):

fY1,Y2(y1, y2) =


ψ + (1− ψ) · e−λ1−λ2

1 + α
2∏
j=1

(1− e−cλj )
 , if y1, y2 = 0,

(1− ψ)fBPm(y1, y2), otherwise.
(5)

Here, ψ is again the probability of zero inflation, and fBPm is the bivariate Poisson PMF
based on multiplicative factors as defined in ??.2 This can be generalized to a bivariate
regression modelling context in the usual way: for observations i and margins j we specify
2For a bivariate, zero-inflated distribution based on the trivariate reduction method, see Li et al. (1999).
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ψij = Λ(Zijγj) and λij = exp(Xijβj), where Λ(·) is the CDF of the logistic or standard
normal distribution, λij is the conditional mean of the jth marginal count distribution
(fC in ??), and both Xij and Zij are covariate vectors for the jth margin with parameter
vectors βj and γj to be estimated, respectively.

2.2 Copula Regression

In contrast, copula regression provides an alternative approach for modeling depen-
dence and mixed-zero generation in count data that does not require assumptions regard-
ing the joint distribution. In short, copulas are functions that specify an arbitrary joint
CDF as a function of uniform marginals and a dependence parameter. This carries the
benefit of requiring no assumptions regarding the form of the joint distribution; rather,
scholars assume the form of the dependence between the two margins in choosing a copula
function, and input uniform marginals into this copula function. These uniform marginals
are derived from the probability integral transform, and therefore require assumptions
about the marginal distributions rather than the joint distribution. However, because
information about the marginals is typically better known than for the joint distribu-
tion, researchers often find that the assumptions required for copula regression are more
tenable than assuming knowledge on the complete form of a bivariate mass function (as
in ??). Importantly, the marginal distributions can also differ from each other. For ex-
ample, in the bivariate case, researchers can specify one margin as zero-inflated negative
binomial, and the other as Poisson, thus permitting greater flexibility than restricting
both margins to be the same.

To see this, note that copulas leverage the probability integral transform in order
to express an arbitrary (and often unknown) multivariate CDF as a copula function of
uniform marginal distributions (Sklar, 1959, 1973). Specifically, the probability integral
transform states that given a strictly increasing, continuous CDF, FX , and the random
variable, Y = FX(X), then Y ∼ U(0, 1):

FY (y) = Pr(Y ≤ y)

= Pr{FX(X) ≤ y}

= Pr{X ≤ F−1
X (y)}

= FX{F−1
X (y)}

= y,

which implies FY is the CDF of the standard uniform distribution. Then, given a ran-
dom vector X = (X1, X2, . . . , Xn) with continuous, monotone increasing marginal CDFs
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(F1, F2, . . . , Fn), we can use the above result to deduce that

{F1(X1), F2(X2), . . . , Fn(Xn)} = (U1, U2, . . . , Un) = U

which is to say that the random vector {F1(X1), F2(X2), . . . , Fn(Xn)} has uniform mar-
gins.

The copula function is then defined as the continuous joint CDF of the variables in
the vector U above (Cameron et al., 2004; Trivedi and Zimmer, 2007, p.10):

F (X1, X2, . . . , Xn) = F{F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)}

= Pr(U1 ≤ u1, U2 ≤ u2, . . . , Un ≤ un)

= C(u1, u2, . . . , un)

where C(·) is the copula function. Thus, working backwards we can see that if U ∼ C,
then {F−1

1 (u1), F−1
2 (u2), . . . , F−1

n (un)} ∼ F , and we can write a multivariate CDF in
terms of a copula function and uniform marginals, although we still assume the marginal
distributions in order to then apply the inverse transform (Trivedi and Zimmer, 2007,
p.10).

While the preceding illustration of copula functions assumes continuous marginal dis-
tributions, we are interested in discrete (zero-inflated) count marginals. In the discrete
case, the lack of continuity gives rise to copulas that are unique only over the Cartesian
product of the ranges of the marginals; that is, over ran(F1)× ran(F2)× · · · × ran(Fn),
where “×” denotes the Cartesian product, and ran is the range of a random variable
(Genest and Nešlehová, 2007; Karlis, 2016; Nikoloulopoulos, 2013). These models there-
fore have the potential for identification problems. Additionally, the dependence between
outcomes is now affected by the choice of margins (Genest and Nešlehová, 2007). For-
tunately, we are interested in copula regression where the issue of identification is less
salient because we model the conditional expected mean as a function of (often con-
tinuous) covariates, with this mean itself being continuous (Trivedi and Zimmer, 2017).
Moreover, even if non-uniqueness persists, the “. . . lack of uniqueness is not a problem
in practical applications as it implies that there may exist two copulas with identical
properties” (Karlis, 2016, p.410).
Keeping the above review of copulas in mind, a bivariate copula CDF with count margins
can be written as (Cameron et al., 2004; Joe, 1997; Marshall and Olkin, 1990)

F (y1, y2) = C{F1(y1), F2(y2); ρ}

= C(u1, u2; ρ),
(6)

where ρ is the dependence parameter to be estimated. In order to obtain the joint PDF

6



from the joint CDF in ??, we would typically take derivatives in the usual way, i.e.,
∂2F/∂u1∂u2; however, the data are assumed to be drawn from a zero-inflated count
distribution, which is discrete, and therefore non-differentiable. Instead, we arrive at the
joint PMF by taking backwards finite differences as an analog to the derivative of the
CDF (So, Lee and Jung, 2011; Trivedi and Zimmer, 2007):

f(y1, y2) = F (y1, y2)− F (y1 − 1, y2)− F (y1, y2 − 1) + F (y1 − 1, y2 − 1)

= C{F1(y1), F2(y2); ρ} − C{F1(y1 − 1), F2(y2); ρ}−
C{F1(y1), F2(y2 − 1); ρ}+ C{F1(y1 − 1), F2(y2 − 1); ρ}

= c{F1(y1), F2(y2); ρ},

(7)

where f(·) is the joint PMF of the original data, c(·) is the copula PMF, Fj(·) are the
marginal CDFs, F is the joint CDF, and C is the copula CDF. Using the joint PMF as
derived above in ??, we can proceed with estimating the parameters of the distribution
by maximum likelihood in the usual way.3

The only remaining question at this point regards the form of the copula CDF, C.
Although a large literature exists on the various copulas and their properties, we focus
on two widely-used bivariate copulas in our discussion (and subsequent software): the
Gaussian and Frank copulas.4 Both of these are symmetric but with different shapes,
particularly in the tails. The Gaussian copula takes the form

CG(u1, u2; ρ) = Φρ

[
Φ−1{F1(y1)},Φ−1{F2(y2)}; ρ

]
= Φρ

{
Φ−1(u1),Φ−1(u2); ρ

} (8)

where Fj are the marginal, zero-inflated count CDFs as defined in ??, Φ−1 is the quantile
function of the standard normal distribution, and Φρ is the CDF of the standard bivariate
normal distribution with correlation |ρ| < 1. Thus, the copula CDF is the standard
bivariate normal, and the dependence parameter is the correlation for this CDF.

Alternatively, the Frank copula comes from the Archimedean class of copulas and
3Note that taking finite differences and then using maximum likelihood is one of a few approaches to
solving the problem of discrete marginal distributions. For discussion of additional approaches not
utilized here, see Inouye et al. (2017).

4For detailed expositions on copulas, see Joe (1997); Nelsen (2007); Trivedi and Zimmer (2007). Regard-
ing count copulas, see Genest and Nešlehová (2007).
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permits unbounded dependence, with the bivariate form

CF (u1, u2; ρ) = −ρ−1 ln
[
1 + {e

−ρF1(y1) − 1}{e−ρF2(y2) − 1}
e−ρ − 1

]

= −ρ−1 ln
{

1 + (e−ρu1 − 1)(e−ρu2 − 1)
e−ρ − 1

}
,

(9)

where the Fj are the same as in ??, and ρ 6= 0 is the dependence parameter. For interested
readers, visual depictions of each copula can be found in ?? in the Appendix.

For both the Gaussian and Frank copulas, we can arrive at a bivariate, zero-inflated
count copula regression model if we assume that the Fj are the CDFs of a univariate
zero-inflated count distribution as defined in ??. From here we can link in covariates by
specifying ψij = Λ(Zijγj) and λij = exp(Xijβ), where Λ(·) is the CDF of the logistic
or standard normal distribution, λij is the conditional mean of the jth marginal count
distribution (fC in ??), and both Xij and Zij are covariate observation vectors for the
jth margin with parameter vectors βj and γj, respectively. After adding covariates, we
can plug-in the resulting equation from (??) or (??) to the PMF from finite-differencing
as shown in ??, and then estimate the parameter vectors γj and βj by maximimum
likelihood.

In sum, to model bivariate zero-inflated count data analysts can use copula regression,
which requires only assumptions about the marginal distributions and a copula function.
The specific steps for arriving at a particular model are:

1. Specify a pair of marginal distributions

2. Select a copula distribution

3. Take finite differences over the copula CDF to arrive at the PMF as in ??

4. Take logarithms and use maximum likelihood to estimate parameters

3 Available Software

Current software is available to model bivariate count data using the strategies dis-
cussed above. Many of these implementations require researchers to assume a joint dis-
tribution of the outcomes, which can be limiting for the reasons given above. Fewer
implementations are available using copula-based approaches, and only one that we are
aware of – a SAS® -macro – also accounts for zero-inflation. In the following we discuss
existing software and detail the benefits of our package over available alternatives.
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3.1 Non-Copula Based Software

When zero-inflation is not a concern, researchers with bivariate count data have several
non-copula based options available to them. First, the R package bpglm (Chowdhury
and Islam, 2020) fits bivariate Poisson and zero-truncated bivariate Poisson models. This
package is not actively maintained on CRAN at the time of this writing, however, source
code is available on GitHub.5 For similar functionality in Stata, the package bivcnto (Xu
and Hardin, 2016) uses maximum likelihood to estimate bivariate Poisson and Negative
Binomial regression models with the joint PMFs defined in Famoye (2010b) and Marshall
and Olkin (1985). Lastly, the SAS®-macro %bicount (Chou and Steenhard, 2011) fits
bivariate count models to a variety of assumed joint PMFs.

When zero-inflation is a concern, users can again use the SAS-macro %bicount, or
can rely on the bivpois R package (Karlis and Ntzoufras, 2005). The latter of these
two estimates both bivariate Poisson, and bivariate zero-inflated Poisson models to an
assumed joint PMF derived from the trivariate reduction method.6 Despite offering
a widely-available means to estimate bivariate zero-inflated count models, the package
suffers some drawbacks. Namely, it permits only positive dependence, assumes the form of
the joint distribution of the data, and requires both margins to be of the same functional
form (i.e., both margins are Poisson or zero-inflated Poisson).7

3.2 Copula Based Software

Beyond packages that assume a joint distribution, there are also implementations of
copula regression models available in most widely-used statistical software platforms. As
copula modeling is a broad literature, we limit ourselves to discussion of copula regression
software. In SAS®, discrete- and mixed-margins copula regression have been done using
the nlmixed procedure (Chen and Hanson, 2017). Alternatively, both the SAS %bicount
macro and Stata bivcnto package can again be used, this time for copula-based count
regression. In SAS, all common count margins are supported, including Poisson, negative
binomial, and generalized Poisson, as well as their zero-inflated, truncated, and censored
counterparts; however, only the Frank copula is supported. Stata’s bivcnto supports
Poisson, negative binomial, and generalized Poisson margins, and has options for the
Frank, Gaussian, and Kimeldorf-Sampson copulas. Notably, bivcnto does not support
zero-inflated count margins.

In R, users have several options for copula regression. First, the copulaRegression
package (Kraemer, 2014) fits gamma and zero-truncated Poisson GLMs via copula, al-
5For bpglm, visit https://github.com/chowdhuryri/bpglm.
6In fact, it permits arbitrary diagonal inflation, not just zero-inflation.
7The code for this package is not on CRAN. To use it, visit http://www2.stat-athens.aueb.gr/ jbn/pa-
pers/paper14.htm.

9

https://github.com/chowdhuryri/bpglm
http://www2.stat-athens.aueb.gr/~jbn/papers/paper14.htm
http://www2.stat-athens.aueb.gr/~jbn/papers/paper14.htm


though the package is not being maintained on CRAN as of this writing.8 Second, the
CopulaCenR package (Sun and Ding, 2019) fits bivariate copula regressions to both
parametric and nonparametric censored margins, such as Weibull or Cox distributions,
to name only a few. Third, the GJRM package fits a wide variety of copula distri-
butions for dependent, sample-selected, censored, and truncated marginals, all using a
trust region algorithm for the likelihood search. Available on CRAN, this package also
permits Poisson and negative binomial margins, however, it does not have allow for zero-
inflation.9 Additionally, the copCAR package (Goren and Hughes, 2021; Hughes, 2015)
fits bivariate copula models to areal data with spatial dependence, permitting binomial,
Poisson, and negative binomial margins, as well as offering three estimation approaches.10

Lastly, the gcmr package (Masarotto and Varin, 2017) fits Gaussian copula regression
models to a single outcome, instead modelling the dependence across observations either
serially or spatially.

Despite this seeming abundance of options, for copula-based bivariate zero-inflated
count regression models, the only software implementation is the SAS® macro %bicount,
which, in addition to fitting models to assumed joint distributions, also permits zero-
inflated count copula regression models. However, as of this writing it only supports
the Frank copula. Moreover, although several open-source R packages exist for copula
regression, we are unable to find any such implementation that permits zero-inflated
count marginal distributions. Because of the already-mentioned benefits to using copulas
for dependence modeling, and to make such tools more widely available for researchers
with zero-inflated count margins, we therefore provide a set of R functions to estimate
copula-based zero-inflated bivariate count models.

4 Implementation in R
The primary function in the bizicount package is bizicount:

bizicount(fmla1, fmla2, data, cop = "gaus", margins = c("pois", "pois"),
link.ct = c("log", "log"), link.zi = c("logit", "logit"), starts = NULL,
keep = F, subset, na.action, weights, frech.min = 1e-7, pmf.min = 1e-7,
...)

In addition to this function, we provide functions for random number generation,
PMF, CDF, and quantile evaluation for the univariate zero-inflated Poisson and negative
binomial distributions. Importantly, the copula package in R (Yan, 2007) can then be
used to generate from the bivariate copula distribution with zero-inflated count margins.
8Old source code available at https://rdrr.io/cran/CopulaRegression/.
9For further details, see Marra and Radice (2017) and van der Wurp et al. (2019).
10Some of these estimation approaches are further discussed in Inouye et al. (2017).
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Additionally, we provide an additional regression function for univariate zero-inflated
count models; however, as all of these functions except bizicount are not the main
focus of this article, we detail them briefly in the Appendix. Finally, the frech.min
and pmf.min parameters are included for computational purposes, but will rarely require
alteration; as such, we discuss them further in the Appendix.

4.1 Data Input

To estimate a model using bizicount, users must first input a multi-part formula for
each margin (fmla1, fmla2) (Zeileis and Croissant, 2010), and will typically supply a data
frame containing the required data. If a margin is zero-inflated (detailed below), its for-
mula will use a vertical “bar” (|), and be similar to y_j ˜ x_j | z_j. If no margin is zero
inflated, then the formula simplifies to y_j ˜ x_j. Each marginal formula supports off-
sets in each part of the formula specification; for example, y_j ˜ x_j + offset(count_offset_variable) | z_j + offset(ZI_offset_variable).
Finally, weights can be specified, and analyses can be restricted to a subset of obser-
vations as desired. All together then, users are unrestricted in terms of which covariates
they input in each formula, that is, the covariates for each margin can be the same or
different, as well as offsets.

4.2 Copula and Marginal Distributions

After specifying their formulas and any optional features (e.g., offsets, weights, sub-
sets), users then decide on either a Frank ("frank") or Gaussian ("gaus") copula via
the cop parameter (partial matching supported), with the details of each copula’s form
specified in ?? and ??, respectively. Then, a character vector of marginal distributions
is specified via the margins parameter, including the Poisson as "pois", the negative
binomial as "nbinom", and their zero-inflated counterparts, "zip" and "zinb" respec-
tively. Clearly then, and despite the name bizicount, the function permits zero-inflated
margins but does not require them, as users are free to select their non-inflated coun-
terparts. After selecting marginal distributions, users specify the count and zero-inflated
link-functions from ?? as length-two character vectors via link.ct and link.zi, with the
two elements of each vector corresponding to one of the two margins. The zero-inflated
portion permits links from "logit", "probit", "cauchit", "log" or "cloglog", while
the count portion permits one of "log", "identity" or "sqrt".

4.3 Starting Values

Users also have the option to input a custom set of starting values for the likelihood
optimization via the starts parameter, or by default, have the function choose starting
values for the them. If no starting values are supplied by the user, the function auto-
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matically uses the estimates of coefficients from a univariate fit for each margin. The
dependence parameter’s starting value is set as the Spearman correlation between the
two outcomes.

4.4 Other Options and Recommendations

Finally, users are permitted increased control over the optimization procedure via
the variable arguments ... parameter. The bizicount function optimizes the likelihood
using R’s nlm function, which comes by default with R. Users can pass most any option to
nlm via the ... argument in bizicount. Exceptions include inverting the function scale,
as well as opting not to include the Hessian matrix in output; attempts at alteration of
these two options are flagged with a warning, and not heeded.

One key parameter in nlm is stepmax; this controls the maximum allowable step-size
used in the quasi-Newton derivative-based optimization process. We have found that
often this parameter may need to be tuned in order to overcome some convergence issues,
and invertability or non-negative definiteness of the Hessian matrix. Specifically, users
may find it useful to reduce stepmax when faced with convergence or singularity issues.
To do so, users must simply put stemax = X into the bizicount() call, where X is a
positive number. That in mind, users are directed to the help files for nlm for further
details on fine-tuning the likelihood search, as all arguments to nlm can be altered by
specifying them in bizicount.

Lastly, because of the fact that bizicount is using numerical estimates of the gra-
dient and Hessian during the likelihood search, we strongly recommend centering and
scaling covariates prior to estimating parameters. Through our own experiences with the
function, ensuring that all variables are on the same scale tends to both speed up the
optimization process, and prevents some errors that occur when taking excessively large
steps along one dimension of the parameter space.

4.5 Generic Methods and Model Object

The bizicount function returns an S3 object of class bizicount that has a host of
generic methods. Table 1 below includes short descriptions of each.

In addition to having these associated methods, the bizicount class of objects is a list
containing, among other things, the numerical Hessian matrix, the numerical gradient
at convergence, the covariance matrix, and several matrices containing the coefficient
estimates and their asymptotic standard errors, corresponding p-values, and z-scores. To
conserve memory, the keep option defaults to FALSE, meaning that the design matrices
and matrix of outcomes are not kept in the outputted model object. Importantly, keep
must be set to TRUE if users want to do post-estimation diagnostics, or call the fitted
function.
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function Description
print Prints the simplified vector of coefficient estimates
summary Returns same model, gives greater details in print
coef Returns a vector of model coefficients
fitted Returns n× 2 matrix of fitted values for each margin
logLik Returns log-likelihood at convergence point
nobs Returns number of observations used in estimation
AIC Returns Akaike Information Criterion (Akaike, 1973)
BIC Returns Schwartz-Bayesian Information Criterion (Schwarz, 1978)
vcov Returns the covariance matrix of model parameters
extract Returns a texreg (Leifeld, 2013) object
simulate Returns simulated matrices for use in DHARMa (Hartig, 2020)
make_DHARMa Returns a list of DHARMa-class objects for the model

Table 1: Generic Methods for bizicount objects. Note that the extract function requires an
S4 object, so we define an S4 bizicount object for use with texreg, while all other generics
expect and S3 object. The results of the simulate function can be input to the make.DHARMa
function, as detailed later in ??.

4.6 Producing Tables and Coefficient Plots with texreg

With a desired set of models in hand, bizicount objects are fully compatible with
the suite of functions from the texreg package. Namely, tables of coefficients can be
produced in text, Word, or LATEX formats, and coefficient plots drawn. Compatibility
with texreg is achieved by defining an extract method for bizicount objects. Note
that this extract method prepends an identifier to the beginning of each covariate so
as to distinguish the same covariate appearing in each part of the model (ct for count,
and zi for zero-inflation). For example, the var variable in the count portion of a
bizicount model would be extracted as ct var, while the same variable appearing in the
zero-inflated portion is extracted as zi var. This approach makes texreging additional
models (i.e., GLMs) alongside bizicount objects more easy, as the coefficient vector for
the other models can simply be renamed to be consistent with the identifier-prepended
names produced by extract. An example of this entire process is demonstrated in
??, although if users desire to suppress the identifiers, that option is available as well.
However, note that suppressing the identifier when texreging additional models alongside
bizicount models will often result in a larger than desired table.

Briefly, the extract function has three parameters when used on a bizicount object:

extract.bizicount(model, CI=NULL, id=T)

with model being the bizicount model object, CI is a number on the unit interval
specifying the desired two-tailed confidence level, and id being TRUE tells the extraction
to prepend the identifiers outlined previously.
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4.7 Model Diagnostics with DHARMa

After estimating a desired model, users may wish to do various forms of diagnostic
testing to assess model fit. In typical GLM settings, this would involve inspecting residu-
als of some form, such as deviance, Pearson, or Anscombe (Cameron and Trivedi, 2013).
However, it is well known that the discrete nature of most outcomes in GLMs makes
residual analysis difficult, and often times misleading (Dunn and Smyth, 1996). In an
attempt to rectify this gap, R’s DHARMa package (Hartig, 2020) offers non-parametric,
simulation-based techniques to assess model fit, outliers, dispersion, zero-inflation, as well
as independence in a host of models. Briefly, this is accomplished by simulating outcomes
using the parameters of the fitted model, and inspecting the quantiles of the fitted values
in relation to the quantiles of these simulated datasets to determine deviation from what
would be expected if the model were true. Users are referred to the detailed vignette on
DHARMa for additional information and examples.

For bizicount-class objects, we provide two useful functions in relation to DHARMa’s
diagnostic tools. First, the generic simulate function is given a corresponding method
in our package to simulate the datasets required by DHARMa. A list containing two
matrices of simulated outcome data for each margin is returned, each of which can be
used with DHARMa, particularly the createDHARMa function. However, because there
are two sets of simulations—one for each margin—we we provide a make.DHARMa wrap-
per around createDHARMa to first create this list of simulated datasets, and then create
a list of DHARMa objects from them. That is, users can simply call make.DHARMa on
a bizicount object to then obtain a list of DHARMa objects that interface with all
of that package’s methods, as shown in ??. However, if users require access to only the
simulated values, the simulate function makes this simple.

In short, the function has four parameters:

make.DHARMa( model, n = 250, seed = 123, method = c("PIT", "traditional") )

where users must input a bizicount-class model, a number of simulations, n, a seed for
these simulations, and the method used for obtaining the quantiles of a discrete distri-
bution. As this is simply a wrapper around DHARMa’s createDHARMa function, users
are referred to the corresponding documentation for details on these parameters.

5 Empirical Application: Terrorism in Nigeria

Terrorism scholars are often interested in the determinants of terror attacks perpe-
trated by a particular terrorist group or set of groups. Because attack frequencies (in
a given discrete space-time unit) tend to be the outcome of interest in terrorism re-
search, scholars typically model these attacks using a count distribution. However, two
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common issues that arise in this research are often underaddressed: i) dependence be-
tween terrorist organizations’ attacks, and ii) attacks being generated by a mixture of
distinct processes. Regarding dependence, terrorist groups are theorized to both compete
(Conrad and Greene, 2015; Kydd and Walter, 2006) and form alliances with other organi-
zations (Horowitz and Potter, 2014), implying that the attacks by one terror organization
are likely dependent on those of others. Secondly, researchers may observe zero terror-
ist attacks for two reasons: terrorist groups may be present in a location but inactive
(i.e., stochastic zeroes), or alternatively terror attacks go unreported, no terror groups
are present, etc.(i.e., structural zeroes). Thus, studies of terrorism face both problems
discussed here: dependence across outcomes and mixed generation of zero counts.

As such, our preferred copula regression approach appears well suited to modeling the
attacks of two or more groups. As such, we now demonstrate the utility of bizicount
in modeling these type of data with a cross-sectional analysis of terror attacks in Nigeria
during 2014. During this time period, there were two main terror groups active in Nigeria:
Boko Haram and Fulani extremists. We focus on terror attacks from these two respective
groups in our subsequent bivariate analyses.

5.1 Data

We analyze two sets of terrorist attacks in Nigeria during 2014, one perpetrated by
Boko Haram (att.bok), the other perpetrated by Fulani extremists (att.ful). These
terrorism data come from the National Consortium for the Study of Terrorism and Re-
sponses to Terrorism’s (START) Global Terrorism Database (GTD) (LaFree and Dugan,
2007; START, 2018), which is an event-level data set cataloguing individual terror at-
tacks.11 The GTD data provides a wealth of information, including, importantly for us,
the perpetrator and the spatial coordinates (i.e., latitude and longitude) of each attack.
Using this information, we aggregate the number of events perpetrated by each group
in Nigeria during 2014 up to the PRIO-GRID square level (0.5 × 0.5 decimal degrees).
Using the PRIO-GRID as the unit of analysis allows us to easily incorporate existing
sub-national covariates from PRIO-GRID 2.0 dataset (Tollefsen et al., 2015; Tollefsen,
Strand and Buhaug, 2012). Specifically, we include grid-level data on population (pop)
(CIESIN & CIAT 2005), percent mountainous terrain (mtns) (Blyth et al., 2002), and
the latitude and longitude of grid centroids (xcoord, ycoord), all of which are common in
terrorism research. Note that all covariates are mean-centered and scaled by one standard
deviation.
11For details on coding methodology and criteria, see the GTD codebook.
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5.2 Models and Output

In order to compare the bivariate models to their univariate counterparts, we first
estimate univariate Poisson and zero-inflated Poisson regression models for attacks by
Fulani Extremists (FE) and by Boko Haram (BH). First, defining the base formula and
estimating the univariate Poisson models using the glm function:

load("empirical_replication/data_replication.RData")

# Univariate Poisson Models

fmla.ful = att.ful ˜ pop + mtns + xcoord * ycoord

fmla.bok = update.formula(fmla.ful, att.bok ˜ .)

pois.ful = glm(fmla.ful, data=dat, family=poisson(link="log"))

pois.bok = glm(fmla.bok, data=dat, family=poisson(link="log"))

Next, we update the formulas for use with our univariate zero-inflated count regression
function, zic.reg (which is detailed in the Appendix), in order to compare the Poisson
to its zero-inflated counterpart, and eventually compare the two to their corresponding
bivariate models:

# Univariate Zero-Inflated Poisson Models

library("bizicount")

fmla.zi.ful = att.ful ˜ pop + mtns + xcoord * ycoord | pop + mtns + xcoord * ycoord

fmla.zi.bok = att.bok ˜ pop + mtns + xcoord * ycoord | pop + mtns + xcoord * ycoord

unizi.ful = zic.reg(fmla = fmla.zi.ful,

data = dat)

unizi.bok = zic.reg(fmla = fmla.zi.bok,

data = dat)

The same formulas from the univariate Poisson and univariate zero-inflated Poisson
models can then be used as the formulas for each margin of the bivariate Poisson and
zero-inflated bivariate Poisson models. In this case, we set cop="frank", meaning we use
a Frank copula. Finally, note that the margins are set as c("pois", "pois") by default,
but are explicitly input here for the marginal Poisson case for clarity.

# Bivariate Poisson

bivpois = bizicount(fmla.ful,

fmla.bok,

data = dat,
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cop = "frank",

margins = c("pois", "pois"),

keep = T

)

# Bivariate, zero-inflated Poisson, Frank copula

zibivpois = bizicount(fmla.zi.ful,

fmla.zi.bok,

data = dat,

cop = "frank",

margins = c("zip", "zip"),

keep = T

)

Binding all of the univariate and bivariate models just estimated to a list, we can
apply the texreg function to this list, which will automatically use the extract method
that we have defined for bizicount objects in order to obtain the necessary information,
and output it to a table. Note that due to name mis-matches on covariates, we change
the names vector for the glm objects to be consistent with the names of the covariates
from zicreg and bizicount, as noted in ??:

# Texreg

library("texreg")

# Rename model coefficients for table

names(pois.ful$coefficients) = paste0("ct_", names(pois.ful$coefficients))

names(pois.bok$coefficients) = paste0("ct_", names(pois.bok$coefficients))

mods = list(pois.ful, pois.bok, unizi.ful, unizi.bok, bivpois, zibivpois)

texreg(mods,

groups = list("Count Model" = 1:6, "Zero Inflation" = 7:12),

dcolumn = T,

digits = 3,

custom.model.names = c(

"Poisson: Fulani",

"Poisson: BH",

"Univariate ZIP: Fulani",

"Univariate ZIP: BH",

"Bivariate Poisson: Fulani",
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"Bivariate Poisson: BH",

"Bivariate ZIP: Fulani",

"Bivariate ZIP: BH"

)

)

The resulting output from texreg is presented in Table 2. Focusing first on the
respective univariate models (columns 1 - 4), we see that the models accounting for zero
inflation (columns 3 and 4) produce significantly different results from those that did not
(columns 1 and 2). For the FE sample, observe that failing to account for zero inflation
suppresses the effect of Population and Mountains, as both are insignificant in column
1 and positive and significant in column 3. The zero inflation coefficients in column 3 are
also consistent with this interpretation, as both Population and Mountains are positively
related to excess zeroes; as such, when this process is neglected in column 1 the recovered
coefficients conflate the positive zero-generating effect and the positive count-generating
effect, producing a null finding. Similar patterns obtain in the BH samples (columns 2
and 4), except now the coefficients on Population and Mountains in the uncorrected
case (column 2) are inflated, because these covariates are correlated with fewer zeroes
for BH (as seen in the zero inflation results of column 4).

Continuing to the bivariate models, we see that accounting for dependence but not
zero inflation (columns 5 and 6) produces results quite different to the univariate analog.
This is especially true for the FE sample, as both Population and Mountains are negative
and significant (column 5), as opposed to the positive (but insignificant) finding in column
1. Note that the dependence parameter is also positive and significant, suggesting that
the bivariate estimator is appropriate in this case. Intuitively, however, this does not
make much sense, as we know that these respective terror groups operate in different
parts of the country. As such, they should have negative dependence. This is, in fact,
observed in the bivariate zero-inflated Poisson results (columns 7 and 8), which produce
a negatively signed, yet insignificant dependence paramater. It seems, therefore, that the
earlier positive dependence paramater was due to the unmodeleded zero inflation in these
processes.

Here we demonstrate the with applied data that covariate results can be sensitive to
modeling choices made by researchers on outcome error dependence and zero inflation.
However, with a single sample of observed data, we cannot make strong statements about
the relative performance of these estimators. To explore this, we offer a set of simulation
experiments in the Appendix. Briefly summarizing those findings, we observe that, as
expected, neglecting dependence (i.e., estimating univariate zero-inflated models) results
in inefficient estimators, while omitting zero-inflation (i.e., estimating bivariate Poisson
models) results in bias for both covariate effects and the dependence parameter. Together,
these results suggest that unless researchers can rule out both of these issues ex-ante, our
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Univariate Models Bivariate Models
Poisson ZIP Poisson ZIP

FE BH FE BH FE BH FE BH
Count

Intercept −0.691∗∗∗ −1.954∗∗∗ 0.776∗∗∗ 0.151 −1.262∗∗∗ −2.379∗∗∗ 0.285∗ 0.568∗∗
(0.085) (0.162) (0.116) (0.210) (0.122) (0.195) (0.121) (0.194)

Population 0.119 0.869∗∗∗ 1.216∗∗∗ 0.443∗∗∗ −0.441∗ 0.945∗∗∗ −0.767∗ 0.233∗∗
(0.096) (0.056) (0.260) (0.064) (0.202) (0.062) (0.371) (0.076)

Mountains 0.056 −0.109∗ 0.484∗∗∗ −0.033 −0.441∗∗∗ −0.050 0.257∗ −0.019
(0.077) (0.050) (0.079) (0.046) (0.108) (0.057) (0.106) (0.052)

Longitude 0.308∗∗ 2.659∗∗∗ −1.499∗∗∗ 1.627∗∗∗ 0.730∗∗∗ 2.635∗∗∗ −2.047∗∗∗ 1.217∗∗∗
(0.118) (0.139) (0.257) (0.149) (0.144) (0.161) (0.260) (0.149)

Latitude −0.213∗ 0.770∗∗∗ −0.708∗∗∗ 0.388 −0.693∗∗∗ 0.952∗∗∗ −1.007∗∗∗ 0.162
(0.092) (0.133) (0.142) (0.206) (0.122) (0.154) (0.146) (0.211)

Longitude × −0.719∗∗∗ −0.609∗∗∗ −1.658∗∗∗ −0.543∗∗∗ −1.037∗∗∗ −0.585∗∗∗ −1.571∗∗∗ −0.403∗∗
Latitude (0.128) (0.108) (0.280) (0.120) (0.170) (0.120) (0.307) (0.127)

Zero Inflation

Intercept 0.170 1.595∗∗∗ −3.462∗∗∗ 1.885∗∗∗
(0.497) (0.304) (0.523) (0.276)

Population 1.146∗ −0.726∗ −0.434 −0.758∗∗
(0.486) (0.306) (0.609) (0.269)

Mountains 0.988∗∗ −0.216 1.735∗∗∗ −0.153
(0.318) (0.204) (0.407) (0.207)

Longitude −3.638∗∗ −0.525 −10.546∗∗∗ −0.779∗
(1.183) (0.368) (1.199) (0.343)

Latitude −0.784 −0.386 −4.742∗∗∗ −0.525
(0.529) (0.316) (0.591) (0.273)

Longitude × −1.359 −1.066∗∗ −6.893∗∗∗ −0.908∗∗
Latitude (0.986) (0.344) (0.890) (0.317)

Dependence 1.642∗ -0.768
(0.762) (1.304)

BIC 861.562 952.230 540.451 778.600 1442.682 1097.948
Log Likelihood −413.552 −458.886 −235.768 −354.842 -716.836 -540.310
N 312 312 312 312 312 312

Table 2: Univariate and Bivariate Poisson and Zero-Inflated Poisson Models of Terrorist Attacks, Frank Copula. Standard errors are in
parentheses, with ∗∗∗p < 0.001; ∗∗p < 0.01; and ∗p < 0.05.

19



bizicount function should be utilized.

5.3 Diagnostics

To then carry out post-estimation diagnostics on the preceding models, we can use
DHARMa’s residual analysis by invoking bizicount’s make DHARMa wrapper, and then
use any of DHARMa’s functions on the resulting list of objects, as discussed in ??. For
example, testing the marginal uniformity of the residuals using a KS test can be done as
follows:

# DHARMa

library("DHARMa")

nsims = 500

dharma_bivpois = make_DHARMa(bivpois, nsims, seed=78941)

dharma_zibivpois = make_DHARMa(zibivpois, nsims, seed=97941)

bivpois_ks = lapply(dharma_bivpois, testUniformity, plot=F)

zibivpois_ks = lapply(dharma_zibivpois, testUniformity, plot=F)

names(bivpois_ks) = names(zibivpois_ks) = bivpois$outcomes

Which then has the corresponding output as follows.

DHARMa Output: Bivariate Poisson

> print(bivpois_ks)
$att.ful

One-sample Kolmogorov-Smirnov test

data: simulationOutput$scaledResiduals
D = 0.10385, p-value = 0.002389
alternative hypothesis: two-sided

$att.bok

One-sample Kolmogorov-Smirnov test

data: simulationOutput$scaledResiduals
D = 0.090717, p-value = 0.01177
alternative hypothesis: two-sided
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DHARMa Output: Bivariate Zero Inflated Poisson

> print(zibivpois_ks)
$att.ful

One-sample Kolmogorov-Smirnov test

data: simulationOutput$scaledResiduals
D = 0.039506, p-value = 0.7149
alternative hypothesis: two-sided

$att.bok

One-sample Kolmogorov-Smirnov test

data: simulationOutput$scaledResiduals
D = 0.040695, p-value = 0.6797
alternative hypothesis: two-sided

Inspecting the output from the KS tests, we see that failing to account for zero-
inflation yields marginal models that do not fit a Poisson distribution very well. How-
ever, after accounting for zero-inflation, we fail to reject the KS test’s null hypothesis,
suggesting a better fit when accounting for excess zeros. Note also that DHARMa has
a host of additional functions, and default plotting techniques for its objects. For clarity,
we only include the above KS tests for marginal uniformity, but some additional tests
are shown in the Appendix for interested readers. Alternatively, readers are referred to
the detailed documentation on DHARMa, as any of its functions is compatible with the
DHARMa objects that we created above.

6 Conclusion and Future Directions

As we have demonstrated here, with multivariate count data researchers should often
consider both dependence across outcomes and zero inflation (i.e., an increased probabil-
ity mass on zero). While many solutions exist for each of these problems separately, when
faced with both simultaneously researchers have far fewer options. Currently, researchers
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interested in estimating zero-inflated bivariate count models are often required to specify
a particular multivariate zero-inflated count distribution, even when the assumptions for
such a specification are not well supported. Here we have discussed how copulas can be
used to provide an alternative that only requires assumptions about the marginal distri-
butions and the form of the dependence, assumptions which are often more tenable. Using
this strategy, we express an arbitrary joint distribution as a known copula distribution
with uniform marginals and an additional parameter to capture the dependence between
outcomes. Because researchers here are only required to supply the marginal distribu-
tions, it is straightforward to allow for zero inflation: one simply specifies zero-inflated
count margins for the joint distribution.

To make copula-based bivariate zero-inflated count regression models more accessi-
ble, we present the bizicount package using R. Our package supports both Frank and
Gaussian copula regression for either Poisson or negative binomial marginal distributions,
and importantly, their zero-inflated counterparts. Moreover, to make the transition from
modeling to professional writing less costly for users, we extend functions from the texreg
package to output bizicount models alongside other models as one table. To facilitate
additional post-estimation diagnostic tests, we include functions compatible with the
well-known DHARMa package, thus permitting marginal residual analysis, dispersion
testing, as well as a host of other tools. In this way, we offer authors an alternative means
of accounting for dependence between their zero-inflated counts, as well as additional tools
to aid in the analysis and presentation of model results.

In future work we plan to consider adding functionality to the bizicount package
including: the “distributional transform” (Inouye et al., 2017; Kazianka, 2013; Kazianka
and Pilz, 2010; Rüschendorf, 2013), the addition of non-copula based approaches, and
an extension of the package to higher dimensional settings (e.g., trivariate models). For
the extension to multivariate settings – i.e., with dimension d > 2 – we would likely use
vine pair copula constructions (vine PCCs), due both to their computational superior-
ity and accuracy relative to other approaches (Panagiotelis, Czado and Joe, 2012). As
needed, we will also consider adding support for additional marginal count distributions,
including censored and truncated Poisson, negative binomial distributions, generalized
Poisson distribution, etc. For now, however, we feel that our base bizicount package is
sufficiently general to assist in estimating the models most often encountered by applied
researchers.
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A Visual Depictions of Copulas
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Figure A.1: Bivariate Frank and Gaussian Copula PDFs and CDFs
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B Monte Carlo Evidence
Below we provide some monte carlo evidence for claims made in the introductory

portion of this article. The data from these simulations are available with our replication
materials.

The data-generating process for the below simulations is as follows:

Yj ∼ ZIP {λj = exp(Xjβj), ψj = ψj}

cor
[
Φ−1{F1(Y1)},Φ−1{F2(Y2)}

]
= cor(U1, U2) = ρ

Where

• j ∈ {1, 2} are the margin indices

• N = 500 is the sample size, which is constant for our simulations

• β1 = [1, 3.25,−2.3]> is a vector of parameters for the count portion of margin 1,
including an intercept. This is not varied.

• β2 = [2,−1.75, 3.5]> is a vector of parameters for the count portion of margin 2,
including an intercept. This is not varied.

• Fj is the CDF of the respective marginal ZIP distribution

• Φ−1 is the univariate standard-normal quantile function

• ρ ∈ {0.15, 0.85} is the dependence parameter to be varied in the Gaussian copula.

• ψ1, ψ2 ∈ {0.1, 0.6} are the zero-inflation parameters to be varied in the Gaussian
copula for each margin

• XN×3
1 ∼ Bernoulli(p = 0.5) is the matrix of covariates for margin 1, with an

intercept included

• XN×3
2 ∼ Exponential(rate = 3) is the matrix of covariates for margin 2, with an

intercept

Given these data, we then estimate three models:

1. Our preferred bivariate model with zero-inflated Poisson margins using a Gaussian
copula.

2. A bivariate model with Poisson margins using a Gaussian copula; that is, a bivariate
model omitting zero-inflation in the margins.

3. A univariate zero-inflated Poisson model for each outcome, Yj. That is, a univariate
model for each outcome vector that omits dependence, but which correctly specifies
the marginal distribution.
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Figure B.1: Density of Centered Count Slope Parameter Estimates (β21 = 3.25) in Margin 1,
with ψ2 = .1

The above densities are for the second count slope parameter in margin 1, β21 = 3.25,
while holding margin 2’s zero-inflation parameter constant at ψ2 = .1. The densities of
the estimates are centered on the true value, i.e., they are β̂21 − β21. A few conclusions
are apparent:

• The correct bivariate model is unbiased.

• The incorrect bivariate model is biased upward, with the degree of this bias increas-
ing in the degree of zero-inflation. This is to be expected, as Poisson margins have
a mean of λ, while ZIP margins have a mean of (1− ψ)λ ≤ λ.

• The univariate ZIP model that omits dependence has greater variance than the
correct bivariate model. This difference in variance increases with the degree of
dependence in the data generating process, which is to be expected as there is less
information upon which to base the univariate inferences when compared to their
bivariate counterpart.
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Figure B.2: Overconfidence of Centered Count Slope Parameter Estimate (β21 = 3.25) in
Margin 1, with ψ2 = .1

The above plot demonstrates the level of overconfidence in the estimated parameter
β21 compared to its empirical sampling distribution, again while holding margin 2’s zero-
inflation fixed at ψ2 = .1. We measure overconfidence as

MAD(β̂)
med[ŜE(β̂)]

In words, we take an estimate of the dispersion of β̂ relative to a measure of the center
of its estimated standard errors. If the standard errors are underestimated on average
relative to the dispersion of the empirical sampling distribution of the estimator, then
this measure exceeds 1. If the opposite is true, we are underconfident, and the measure
is less than 1. Thus, an ideal estimator will have a value close to 1 for overconfidence.
An alternative is to replace the numerator with the standard deviation rather than the
median absolute deviation, and the denominator with the mean of the estimated standard
errors. However, due to some outliers from simulation leading to long tails—particularly
for the incorrectly specified bivariate model—this results in an unreasonable level of
overconfidence. Thus, we use robust measures of the center and spread, which only
affects the incorrect bivariate model specifically by reducing its overconfidence. In other
words, we make it easier for the misspecified model to compete.

The primary conclusion from this plot is that the incorrect bivariate model tends
to underestimate its standard errors, and that the severity of this underestimation in-
creases with the degree of zero-inflation. Surprisingly, the univariate ZIP model does not
underestimate its standard errors in spite of failing to model dependence.
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Figure B.3: Density of Centered Dependence Parameter Estimate with ψ2 = .1

The above density plots are for the centered estimates of the dependence parameter,
again holding the zero-inflation parameter for margin 2 fixed at ψ2 = .1. There are two
primary conclusions from this plot:

1. The incorrect bivariate model underestimates the dependence by about a factor of
1/2.

2. The incorrect bivariate model’s variance on the dependence parameter increases
with the degree of zero-inflation.
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C Computation
In this section we detail the frech.min and pmf.min parameters to bizicount.
As Fréchet (1951) and Hoeffding (1940, 1941) show, any two-dimensional copula dis-

tribution function has the following bounds:

max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v}

where u and v are realizations from the two uniform marginal distributions of the copula,
and C(·) is the copula CDF. Alternatively, this can be written as:

max{F1(y1) + F2(y2)1, 0} ≤ F (y1, y2) ≤ min{F1(y1), F2(y2)}

using the notation from the main text. Accordingly, we impose these bounds on each
of the four CDF evaluations used in the finite difference approximation to the PMF.
However, to avoid numerical issues with floating-point representations (over/underflow),
in practice we use

max{u+ v − 1, frechmin} ≤ C(u, v) ≤ min{u, v, 1− frechmin}

where we require that frech.min ∈ (0, .00001], with a default value of 1e-7. Effectively,
this constrains all copula CDF evaluations to the unit interval.

Second, extremely small values for the PMF—and therefore the likelihood of a each ob-
servation individually—can be rounded off to zero due to numerical underflow. These ze-
ros will then result in infinite-valued logarithms in the log-likelihood, which when summed
with other, finite log-likelihood values, still returns an infinite log-likelihood for all ob-
servations. Thus, to avoid this issue, we threshold PMF values at pmf.min to ensure
stability in evaluating the log-likelihood during numerical optimization. By default, this
is also 1e-7.
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D Further Diagnostics in DHARMa
For clarity, we did not print DHARMa’s diagnostic plots in the main text, so they are

included here. However, readers should also read the documentation for that package, as
there are several other functions that may be of interest.

## Appendix Dharma stuff

name = c("fulani", "bh")

for(i in seq_along(name)){

pdf(paste0("replication/appendix_dharma_bivpois_", name[i], ".pdf"), width=8, height=4.5)
plot(dharma_bivpois[[i]])

dev.off()

pdf(paste0("replication/appendix_dharma_ZIbivpois_", name[i], ".pdf"), width=8, height=4.5)
plot(dharma_zibivpois[[i]])

dev.off()
}

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.01177
Deviation  significant

Outlier test: p= 0
Deviation  significant

Dispersion test: p= 0
Deviation  significant

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted
Quantile deviations detected (red curves)

Combined adjusted quantile test significant

DHARMa residual

Figure D.1: Bivariate Poisson, Boko Haram

35



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.00239
Deviation  significant

Outlier test: p= 0
Deviation  significant

Dispersion test: p= 0
Deviation  significant

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0
0.

00
0.

25
0.

50
0.

75
1.

00

Residual vs. predicted
Quantile deviations detected (red curves)

Combined adjusted quantile test significant

DHARMa residual

Figure D.2: Bivariate Poisson, Fulani

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.67973
Deviation  n.s.

Outlier test: p= 0
Deviation  significant

Dispersion test: p= 0
Deviation  significant

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted
Quantile deviations detected (red curves)

Combined adjusted quantile test n.s.

DHARMa residual

Figure D.3: Zero-Inflated Bivariate, Boko Haram

36



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.71485
Deviation  n.s.

Outlier test: p= 0
Deviation  significant

Dispersion test: p= 0
Deviation  significant

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted
No significant problems detected

DHARMa residual

Figure D.4: Zero-Inflated Bivariate, Fulani

37



E Univariate Functions

E.1 Random Number Generation: rzip, rzinb
To generate samples from the ZIP and ZINB distributions, we define two functions:

rzip(n, lambda, psi, recycle=F)
rzinb(n, size, psi, prob=NULL, mu=NULL, recycle=F)

Where:

• n is the sample size

• lambda or mu are the conditional mean of the count distribution. In other words,
they are not the conditional mean of the ZIP/ZINB distributions, but the mean of
the constituent count distribution. Mathematically, they are the λ and µ found in
(1− ψ)λ for the mean of the ZIP, and (1− ψ)µ for the ZINB.

• psi is the conditional probability of zero-inflation

• prob is an alternative way to specify the mean to the negative binomial distribution;
see ?nbinom for details. For regression purposes, it is often desireable to use mu
rather than prob. One of mu or prob must be specified.

• size is the inverse dispersion parameter of the negative binomial distribution. This
is often denoted θ in the literature, and is inverted to obtain a dispersion parameter
estimate. See ?nbinom for more details.

• recycle allows recycling of unequal length vectors that are input as arguments for
the other parameters in the function. Eg, if mu and psi are of different lengths,
recycle allows these vectors to be recycled to ensure comformity. Note that recy-
cling will occur by default even if recycle is set to FALSE when one argument is
length-one. Eg, if psi is length-one, and lambda is length-n, psi will be recycled.

E.2 CDF Evaluation: ZIP, ZINB
To evaluate the univariate ZIP and ZINB CDFs, we define the following:

pzip(q, lambda, psi, lower.tail=T, log.p=F, recycle=F)
pzinb(q, size, psi, prob=NULL, mu=NULL, lower.tail=T, log.p=F, recycle=F)

Where parameters with the same name as previous functions are the same, and:

• q is the vector of quantiles for evaluation

• lower.tail indicates whether the lower-tail, or alternatively its complement should
be returned.

• log.p indicates whether the preobabilities ought to be returned on the (natural)
log scale
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E.3 PMF Evaluation: ZIP, ZINB
To evaluate the univariate ZIP and ZINB PMFs, we define the following:

dzip(x, lambda, psi, log=F, recycle=F)
dzinb(x, size, psi, prob=NULL, mu=NULL, log=F, recycle=F)

Where parameters with the same name as previous functions are the same, and:

• x is the non-negative integer-valued location at which the mass function is to be
evaluated

E.4 Quantile Function Evaluation: ZIP, ZINB
To evaluate the univariate ZIP and ZINB quantile functions, we define the following:

qzip(p, lambda, psi, log=F, recycle=F)
qzinb(p, size, psi, prob=NULL, mu=NULL, log=F, recycle=F)

Where parameters with the same name as previous functions are the same, and:

• p is a vector of probabilities ∈ [0, 1] at which to evaluate the quantile function.

E.5 Univariate Regression Function: zic.reg
We also include a univariate, zero-inflated count regression function, zic.reg, which is

not only used to obtain marginal starting values, but also is compatible with DHARMa
and texreg, similarly to bizicount. The parameters to the function are:

zic.reg(fmla = NULL, data, subset, na.action,
weights = rep(1, length(y)), X = NULL,
z = NULL, y = NULL, offset.ct = NULL,
offset.zi = NULL, dist = "pois", link.ct = "log",
link.zi = "logit", starts = NULL, optimizer = "nlm",
warn.parent = T, keep = F, ...)

Where:

• fmla is a two-part formula, eg y x|z. If using the data function below, then offsets
should be put directly into this formula.

• data is a dataframe containing the needed variables for the regression

• subset, na.action, codeweights determine the subset of the data to use, how to
handle missingness, and what weights to attach to the observations

• X, z, y, offset.ct, offset.zi are, respectively, the design matrix for the count
portion, the design matrix for the zero-inflation portion, the outcome vector, the
offset vector for the count portion, and the offset vector of the zero-inflation portion.
NOTE: these should only be used when data=NULL, and are primarily advantageous
when using large datasets as they bypass some preliminary data manipulation prior
to optimization. Also, no missingness can be present in any of these quantities.
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• dist is one of either "pois" or "nbinom", determining the count distribution

• link.ct determines the link function for the count portion, and is one of c("sqrt", "identity", "log")

• link.zi determines the link function for the zero-inflation portion, and is one of
c("logit", "probit", "cauchit", "log", "cloglog")

• starts is a vector of starting values. If NULL, these are automatically obtained.

• optimizer is the optimization package used for the likelihood search, one of either
"nlm" or "optim". Default: "nlm"

• warn.parent logical indicating whether to warn about using data from the parent
environment when parameter data is not supplied.

• keep logical indicating whether to keep the model frame used for estimation, or
discard it prior to returning. Note: this must be TRUE to obtain fitted values, and
for diagnostics in DHARMa.

• ... further arguments passed to the chosen optimizer. See ?nlm or ?optim for more
details.

Finally, we provide a quick example of how to use the above function’s output for
diagnostics in DHARMa and with texreg. Note that output is suppressed here for
clarity, as this is only intended to show how users can do this with their own models.
Additionally, this code is assumes that the code from the main text has already been
run, as it relies on the formula and data from there. The simulatedResponse parameter
to createDHARMa is obtained by using the simulate function that we have defined for
zicreg-class objects, as seen below.

library("DHARMa")
library("texreg")
unizi.bok = zic.reg(fmla = fmla.zi.bok,

data = dat,
keep=T) # make sure keep=T

uni.dharma = createDHARMa(simulatedResponse= simulate(unizi.bok),
observedResponse = dat$att.bok,
fittedPredictedResponse = fitted(unizi.bok),
integerResponse = T,
seed = 123,
method = "PIT")

plot(uni.dharma)
texreg(unizi.bok)
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